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I. Family	  member	  and	  DNA	  sample	  characteristics	  	  

Source	  of	  genomic	  DNA	  

DNA was isolated directly from unpropagated peripheral nucleated white blood cells of 

individuals, to avoid any genomic point mutations, indels and rearrangements that may 

accumulate during the establishment of a cell line, and that may obscure gene-

phenotype correlation analyses (S1, S2). 

Participant	  characteristics	  

The clinical characteristics of the affected individuals have been reported previously (S3, 

S4), and as kindred #1 in Ng et al. (S5) The parents self-report European ancestry. 

Principal components analysis of ancestry-informative markers confirms tight parental 

clustering with the CEU HapMap population (Fig. S4). In the entire body of literature for 

Miller syndrome, there is neither recorded an instance of intergenerational transmission 

nor of an instance of consanguinity in affecteds. We tested the genomes of this family to 

confirm the absence of consanguinity. European genomes, subject to a population 

history including selective sweeps, contain homozygous blocks ranging from 140 kb to 

1.9 Mb (S6). Tracts longer than this would suggest consanguinity. In our four individuals, 

there are no homozygous blocks longer than 1.84 Mb; therefore there is no evidence of 

consanguinity. Miller syndrome has the following aliases listed in OMIM: “postaxial 

acrofacial dysostosis,” “POADS,” and “Genee-Wiedemann syndrome.” (S7) The two 

children have a pulmonary phenotype, known by these concurrent exome and genome 

sequencing studies to be primary ciliary dyskinesia, that is similar to the phenotype of 

cystic fibrosis. The two children and their mother are heterozygotes for the ΔF508 

variation in CFTR (confirmed by the Complete Genomics data), but this genotype does 

not account for the pulmonary phenotype of the children. The pulmonary phenotype is 

recognized as primary ciliary dyskinesia based on the identification of the recessive 

mutations in DNAH5. 

IRB approval was obtained from Seattle Children’s Hospital and from the Western 

Institutional Review Board (#2008.0005). All participants provided written consent. 
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II. Sequence	  generation	  

Sequencing	  and	  assembly	  

Complete Genomics, Inc (Mountain View, CA), used their paired end library preparation 

and sequencing-by-ligation methodology as described recently (S8). The average depth 

of haploid coverage by mapped reads in the sequenced family was 51x in the mother, 

88x in the father, 54x in the daughter and 52x in the son. The resulting called coverage 

is indicated in Fig. S2. Reads were mapped to the NCBI reference genome (NCBI Build 

36.1) or recruited by the mapped mate-pair reads for local de novo assembly as well as 

for determining genotyping calls for each reference position for each genome (S8). Data 

for each genome were delivered as lists of sequence variants (SNPs and short indels) 

relative to the reference genome accompanied with variant confidence scores.  

Libraries for sequencing were generated using a four-adaptor protocol (S8). Briefly, 

sequencing substrates were generated by fragmenting genomic DNA followed by 

recursive cutting with type IIS restriction enzymes and the insertion of directional 

adaptors. Hundreds of tandem copies of the resulting circular substrates were then 

replicated with Phi29 polymerase (RCR). The resulting concatamers, referred to as DNA 

nanoballs (DNBs), were adsorbed to grid-patterned arrays. An unchained probe-anchor 

ligation sequencing chemistry (cPAL (S8)) was then used to independently read up to 10 

bases adjacent to each of the eight anchor insertion sites, resulting in 35-base mate-

paired reads (70 bases per DNB). Following background removal and image registration, 

intensities were extracted from the DNB nanoarrays and used to call and score each 

base. The resulting mate-paired reads were aligned to the reference genome. This 

process had a yield in mapped sequence bases in the mother, father, daughter and son 

of the sequenced family of 143.9 Gb, 249.9 Gb, 152.8 Gb and 148.4 Gb respectively. 

Average discordance rates within all mapped bases in the data ranged from 2.0% to 

2.5% over the four genomes; within the highest-scoring 85% of read bases, the 

discordance rate (which includes true variations) ranged from 0.57% to 0.64%. Within 

the staggered reads overlapping each genomic position, up to twenty different probes 

(ten on each strand) assay each of the four bases; thus, base calling errors are largely 

uncorrelated across reads. The distribution of the mate gap (the genomic distance in 

bases between the two paired ends of each read) varied by genomic library; the most 
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probable mate gap within the four sequenced family members was 423 in the mother, 

475 in the father, 390 in the daughter and 339 in the son. 

At locations selected for likely differences from the reference sequence, mapped reads 

were assembled into a best-fit diploid sequence with a custom software suite that 

implements both Bayesian and de Bruijn graph techniques. For each genome and each 

location, this process yielded diploid reference, variant or no-calls with associated quality 

scores (S8).  

We used variant lists defined by CGI’s standard variant confidence score thresholds of 

20 decibels for homozygous variations and 40 decibels for heterozygous variations – 

these balance the rates of false positive variant calls (mostly having lower score) and 

uncalled positions. Insertions as long as 47 bases, deletions as long as 117 bases, and 

complex insertion-deletion events as long as 93 bases were called relative to the 

reference genome. 

Genotype	  calls	  and	  coverage	  statistics	  

By “genotype” we mean: both alleles at a position. There is one genotype position in 

each of our sequenced genomes corresponding to each position of the reference 

genome. At some positions, one but not both alleles of a genotype can be called. These 

positions are considered partially called; for our summary statistics we tabulate these 

positions as completely uncalled. 

Fig. S1 summarizes the coverage statistics for the four sequenced genomes. The 

reference genome used for our analysis is NCBI Build 36.1, which contains 

2,855,343,769 coordinate positions that are not ‘N’s. For our analyses related to the 

exome, we use as our operational definition the set of exons included in the UCSC 

KnownGenes database. This set of exons is larger than the set of exons contained in the 

CCDS database. The CCDS database has been used as a reference basis for exome 

sequencing projects (S5, S9). The difference in size of the CCDS (for NCBI Build 36.1: 

164,217 exons; 27,961,415 bp) and KnownGenes (for NCBI Build 36.1: 235,386 exons; 

79,498,653 bp) databases should be considered in any comparison or meta-analysis of 

the results reported here with results reported from exome sequencing projects. We 
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employ the CCDS definition of exome once in this report, in Fig. 2, because in that figure 

we are evaluating the current utility of exome sequencing for inheritance state prediction.  

III. Polymorphisms	  

A very rare, or novel, SNP is a SNP found neither in dbSNP (build 130) (S10), the 1000 

Genome Project (Pilot 1 release of April 2009) (S11), nor identified in the following 

genomes Venter, Watson, the first Yoruban and Asian genomes (S12-15), and the CNV 

database (S16). For operational purposes, we never consider the allele present in the 

reference genome as a candidate, regardless of reported frequency. Theoretically, very 

rare reference alleles (perhaps sequencing errors) should be candidates; future 

bioinformatic pipelines will consider them. 

There are a number of copy number variations (CNVs) between the reference genome 

and our sequenced genomes. Eighty of the largest of these were identified by 

Comparative Genomic Hybridization with Agilent chips (Agilent Technologies, Santa 

Clara, CA) containing 1 million probes, evenly spaced throughout genome. Of these, 38 

showed heterozygosity in the parents; none were both rare and gene-spanning. 

Locations spanning CNVs (either identified with the Agilent chip and/or with the HMM) 

tend to have an excess of SNPs reported both in dbSNP and in our de novo analyses. 

As a result, our false positive rate for SNPs is elevated in CNVs. Deletions in the 

reference genome with respect to our sequenced genomes result in false negatives (for 

SNPs and for gene candidates) over the region of the deletions. Bioconductor facilitated 

SNP analyses (S17). 

In addition to SNPs as described in the main body of the paper, we identified small 

deletions at 92,945 positions and small insertions at 85,195 positions, ranging from 1 to 

117 bp (Table S1). 

The intermarker distance in the main body of the paper of 802 bp is based on SNPs that 

are heterozygous in at least one member of the family. The inter-SNP distance is shorter 

than this, as many SNPs (defined by reference to a database) are homozygous in all 

members of this family. The average inter-SNP distance in this family is 617 bp. If MIEs 

and state consistency errors are excluded, this distance is 772 bp. Across the four 
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individuals, the inter-SNP distance excluding MIEs and state consistency errors ranges 

from 1027 bp to 1067 bp. 

IV	   Family	  genetics	  

Inheritance	  state	  analysis	  

An “inheritance state” is the pattern, or topology, of Mendelian allele assortment through 

a pedigree at a given reference position. An inheritance state is only defined in the 

context of a pedigree; unlike the related concepts of “phase” and “haplotype”, 

“inheritance state” cannot have meaning when describing a single genome. For the non-

pseudoautosomal regions of the X chromosome, there are two states: nonidentical and 

haploidentical maternal. For the HMM, to prevent overfitting or subjective bias, for each 

state we set all the emission probabilities of each consistent allele assortment pattern 

equal to each other. We set the probability of emitting an inconsistent pattern to 0.5%. 

These probabilities could also have been set to empirically observed frequencies, using 

the frequencies of patterns as they occur in blocks selected with a heuristic algorithm on 

the basis of SNP pattern frequency (Fig. S3), or with an iterative HMM parameter-

estimation algorithm. Results with empirical emissions were similar to those with 

uniformly set emissions; therefore we chose the uniformly set emissions to prevent 

overfitting. In addition to the four inheritance states, we modeled two additional states in 

the HMM. One of these states was a “Mendelian inheritance error rich” state; for this 

state the emission probability of an MIE was set to 30%. The MIE-rich states are likely to 

contain tracts of sequence that are difficult for the Complete Genomics (Mountain View, 

CA) technology to accurately report. The second of these states was the 

“compression/CNV” state. Reads that map to very little diverged repeats or to repeat 

copies not present in the reference assembly can be mismapped. Since 99.85% of the 

positions within the family are invariant, any differences between two superimposed 

repeat copies will appear as heterozygous positions for all individuals (often reported 

with high minor allele frequencies in dbSNP). The compression state is characterized by 

an excess of these patterns. The emission frequencies for the compression state were 

set empirically, with the probability of emitting uniform heterozygosity for all four 

individuals set to 66% (S18). The compression state is likely to include tracts of 
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sequence that are incorrectly assembled in the reference sequence and/or that are likely 

to include mismapped reads in the Complete Genomics assembly. The use of the term 

“CNV” to describe this state would be incomplete, as this state is expected to include 

many sequence elements of the genome that share high similarity to each other. Some 

of these cannot be anticipated from analysis of the reference genome because the 

reference genome includes only a single copy. 

Since we identified more than 3 million informative SNPs, all crossover sites could be 

determined with precision. Our median resolution of 2.6 kb, with a few sites localized 

within a 30-bp window (Fig. 1), is a substantial improvement over a recently published 

median resolution of 93 kb (S19). The methodologies and data used by the HapMap 

project to predict recombination rates are distinct from our methodology and data. 

Therefore the two independent sets of results confirm each other and help to establish 

that an HMM analysis of inheritance states of complete genome sequence is a sensitive 

and precise method for determining the boundaries of inheritance state blocks. Our 

results reaffirm that the majority (~59%) of recombinations occur in and around hotspots 

of chromosomal recombination (S20). In the main text, when we refer to a recombination 

taking place in a hotspot, the bioinformatic interpretation is that for 92 of the 155 regions 

(median length 2.6 kb) in which we calculate a recombination to have taken place, they 

contain a HapMap hotspot or the closest HapMap position is a hotspot. 

“Reverse pedigree analysis” has recently been reported as an alternative approach to 

inheritance-state block identification (S21). SNPtrio encodes genotyping data in a data 

structure similar to an inheritance pattern, and infers recombination positions with an 

heuristic algorithm. Coop et al. report a similar heuristic algorithm (S19). HMM algorithm 

implementations, such as the one we report here, are likely to be slower than SNPtrio. 

However, the difference in speeds of the two algorithms is unlikely to create a bottleneck 

in any computational pipeline for the identification of recombination locations. 

Visual inspection of Figure 2 demonstrates that pedigrees of less than a nuclear family 

of four (trios or other sets of two or three individuals) produce a signal too noisy for 

precise prediction of recombination locations and inheritance states. Trios have no 

informative sites at all. Also, without complete genomic information, less robust inference 

is possible. Exome information is very fragmented; note that in Figure 2, the exome 
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information is scaled up for visibility – the intensity of the signal is much less than for 

complete genome sequence.  

Recombination	  analysis	  

In principle, recombinations can take place in different meioses at positions that are 

within a few basepairs or a few kilobasepairs of each other. If these happen in the two 

meioses of the same parent, leaving too few informative SNPs in between to create a 

signal that the HMM (or any other algorithm) would recognize as a distinct state block, 

they are likely to not be observed, leading to an underestimate of the recombination 

events. They can be observed if they occur in different parents. In only one case did a 

recombination in the mother and the father occur that would have been too close to 

resolve had they been in the same parent. The number of recombinations that we 

missed is likely small, particularly because crossover interference is expected to inhibit 

such recombinations. 

In HapMap data, a hotspot is defined as a region with ≥10 cM/Mb (S22). Fig. 1 shows 

the distribution of maximum recombination values in 1000 Monte Carlo replicates of a 

same-length set of 155 windows at random locations in the genome. 5.423% of the 

155,000 windows have a value >= 10 cM/Mb. A p-value for finding 92 hotspots in our 

observed data in 155 windows is thus 0.054239292 = 3.5x10-117. The sex differences in 

recombination rate are known to be most prominent around the centromeres (S23), and, 

indeed in this dataset, the crossover nearest the centromere was maternal in 20 of 22 

autosomes (Fig. 1). 

IV. Error	  identification	  and	  analysis	  

High sequencing error rates, relative to the frequencies of true genetic variants, 

represent a significant challenge in mining DNA sequence data. We have used our 

approach to family genome inheritance analysis to identify approximately 70% of the 

errors in the set of assembled genomes for this family. Mendelian inheritance errors 

(MIEs) occur when the pattern of alleles observed in a child is inconsistent with 

assortment of the parental alleles. We observed 59,243 such MIEs, which may be the 

result of false base calls, mismapped reads, or more rarely, inherited deletions that are 
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heterozygous in one or both parents. Much more rarely, MIEs may be observed as a 

result of de novo mutations.  

Based on the HMM results and the co-occurrence of MIEs consistent with inheritance of 

deletions, we identified 365 deletions in this family, ranging from 37 bp to >700 kb, with a 

total of >7 Mb. These inherited deletions explain only 1,761 of the MIEs, however, and 

all the deletion data together explain about 5,700 of the 59,243 MIEs. Most inherited 

short indels do not result in an observed MIE (e.g., one hemizygous and one 

homozygous parent will only result in an MIE if the parents have different alleles).  

Adjusting for MIEs explained by inheritance of deletions, and considering that the de 

novo mutation rate is about three orders of magnitude lower than the sequencing error 

rate (S24), the count of MIEs can be reliably used to estimate the rate of genotyping 

error, as ~1.0x10-5 per genotype position per individual. The average error rate, however, 

is a somewhat misleading concept. At positions that are homozygous in all four 

individuals (99.85% of all positions), the error rate is only 8.0x10-6 (such errors lead to 

false heterozygosity calls); at variable positions this rate is 1.7x10-4 (real variants 

miscalled as reference or as an incorrect variant). We determined these error rates with 

several independent methods described below, including exome sequencing and the 

resequencing of ~60,000 positions, each method yielding consistent estimates.  

Overall, ~70-75% of all DNA sequence errors in a four-person pedigree can be detected 

through family genome inheritance analysis.  

Once the inheritance state has been established for a region of the genome, positions 

with allele patterns inconsistent with the inheritance state of a region can be inferred to 

be errors (Fig. S2B) (S25). These “state consistency errors” almost always derive from 

sequencing errors or from assembly discordances. Overall about three quarters of all 

errors in a four-person pedigree can be detected through family genome inheritance 

analysis. These errors may be corrected through targeted resequencing, or labeled and 

sequestered (i.e., placing them in a category with distinct confidence statistics) in 

downstream analyses. By excluding these detected errors, the accuracy of the Complete 

Genomics sequence in the context of this pedigree rises from 99.999% to 99.9997%. Of 

the 323,255 novel SNPs we identified, 17,959 were state consistency errors and 40,110 
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were MIEs. Of the resulting reportable 265,186 SNPs, we estimate a false discovery rate 

of 14%, determined as described below. 

Estimation	  of	  error	  rate	  

We applied Complete Genomics technology as a resequencing approach for analyzing 

each of four genomes. In resequencing, a mapping algorithm maps raw reads to the 

positions of a reference genome. We define a no-call as a report of a genotype of “NN” 

at a reference position. We define an error, only at positions that are not no-calls, as the 

report a genotype at a reference position that is not the genotype that would be reported 

at this position if we knew the true sequences of both haplotypes of an individual’s 

genome.  

There are other types of errors that could be considered for a de novo sequencing 

project, or even in a resequencing project. For example, descriptions of inversions and 

the sequences and locations of novel insertions might be predicted, and these 

predictions would have associated error statistics. For our main analysis we neither 

make such predictions nor provide error statistics.  

MIEs and state consistency errors are observations that may occur at all positions in the 

genome (except completely uncovered positions). MIEs and state consistency errors are 

detected through internal inconsistencies in a data set (i.e., between the genomes of the 

family members). For this reason, because no external reference is needed to identify 

them, counts of MIEs and state consistency errors provide a gold-standard estimate for 

the overall genome error rate. Error estimates based on comparison to external 

reference sequences or to data obtained via resequencing (or genotyping) by alternative 

technologies may suffer from biases or errors in the reference sequences or 

technologies. Most errors arising from sequencing technology imperfections will result in 

MIEs or state consistency errors. MIEs and state consistency errors may also be 

observed at positions with a de novo mutation, an unrecognized indel in at least one 

member of the family, or with unusual inheritance events such as uniparental disomy. 

The method of error rate detection described in the main text, that of comparing blocks 

between the two children that are identical by descent (IBD), provides an error estimate 

based on observations of the frequency that the Complete Genomics technology 
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produces a genotype call that is inconsistent with a replicate assay of the same 

technology on the same true genotype. Error rates can also be estimated by 

comparisons with other technologies. 

Across a conservative portion of the exome (as defined by the Consensus CDS project), 

we could directly compare error rates with an independent data set, as reported in Ng et 

al. (S5) For this comparison there were 1377 discordant genotypes out of 49,998,778 

positions. Of the 1377 genotypes, 969 can be attributed, based on parental status in the 

Complete Genomics data, to errors in the exome data; 408 can be attributed to errors in 

the Complete Genomics data. These data result in an estimated overall error rate across 

the conservative exome of 8.16x10-6 per base pair. This estimate is similar to the 

estimate derived from MIE counts; the difference can be attributed to the restriction of 

the analysis to the exome rather than to the entire genome, which might bias the data 

towards easier-to-sequence regions of the genome. 

By repeating error-rate computations over distinct subsets of our data, we could quantify 

the variation in error rate across different subsets of the genome. The error rate is higher 

in repetitive sequence, in copy number variations (CNVs), and near telomeres. The error 

rate in the exome was 8.1x10-6, less than in other regions, and nearly identical to the 

exome error rate derived from a comparison with the Ng et al. dataset.  

Given that 99.85% of genomic positions are homozygous and identical in all four 

individuals, even though the error rate is lower than at positions with some variability, 

97% of errors occur at invariant positions. A false call of an allele at an invariant position, 

if in a child, will be observed as a MIE; if in a parent, it will be observed as a state 

consistency error ~50% of the time (if the inheritance state permits the observation, as 

described below). We observed 52,009 MIEs with this “invariant position” error pattern: 

22,126 with the unexpected observation in the daughter’s genotype, and 29,883 with the 

unexpected observation in the son’s genotype. When there is an error in a parental 

genotype, a state consistency error will be observed when a falsely called base does not 

appear in either child’s genotype in regions where both alleles of that parent are 

expected to have been inherited, one to each sibling. Thus, maternal errors in 

nonidentical and haploidentical paternal blocks will be observed as state consistency 
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errors, as will paternal errors in nonidentical and haploidentical maternal blocks. We 

observed 11,300 and 10,690 such state consistency errors, respectively.  

Of the approximately 30,000 errors we expect per genome (a total of 120,000 expected 

errors in all four genomes), we observe 59,243 MIEs and 25,725 state consistency 

errors, or about 70% of all errors. Therefore, for many types of analyses, our effective 

error rate (for purposes of computing false positives) is 30% of our genotyping error rate. 

For example, we do not report novel SNPs at positions that are MIEs or state 

consistency errors, so rather than a per base false discovery rate of 1.1x10-5, our rate is 

3.3x10-6, resulting in about 36,000 falsely reported SNPs across all four genomes 

analyzed. 

We also estimated error from a resequencing analysis of 25 regions of length 200 kb 

that were chosen at random from the genome. Within these regions, there were 

3,188,347 sites with Complete Genomics calls in all 4 individuals. 2,577,718 of these 

sites could be called with Maq in the resequencing data. Among those sites, there were 

430 discordances, for a discordance rate of 430 / (2,577,718 x 4) = 4.17x10-5 per site per 

genome. This approximates the expected error rate in the Illumina (San Diego, CA) 

resequencing process. We can conclude that the Complete Genomics error rate is much 

less than this rate, which is consistent with a rate of 1.0x10-5 to 1.1x10-5.  

We can detect variation when as few as one of the four individuals is called at a position, 

so our predicted false negative rate for SNP discovery is dominated by the percent of 

genome not covered by the Complete Genomics assembly in any of the four genomes, 

and is therefore approximately 5% (3% for the exome) (Table S2). In the remaining 95% 

of the genome, our false negative rate for detection of recessive positions is 

approximately 1.7x10-4, which is our estimated genotyping error rate at heterozygous 

sites. We expect 1.1x10-5 x 2,855,343,769 ≈ 30,200 errors per genome that might create 

false positive observations of novel SNPs, or a total of ~121,000 falsely reported novel 

SNPs for our set of four genomes. We observe 323,255 novel SNPs, including these 

false positive errors. Therefore, without identification of MIEs (40,110 of them at novel 

SNP locations), the false discovery rate would be 29%. With identification of MIEs, but 

not state consistency errors (17,959 of them at novel SNP locations), only possible with 

information from the four-person pedigree, the false discovery rate for SNPs would be 
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19%. Because we can identify both MIEs and state consistency errors, our actual false 

discovery rate for novel SNPs is 14%. This rate of 14% comes from ~18,000 undetected 

errors per parental genome. This false discovery rate of 14% is relatively high because 

relatively few true SNPs are novel, so even with a low sequencing error rate and with 

detection of approximately 70% of these errors, a number of sequencing errors are still 

reported as novel SNPs. The false discovery rate for SNPs in a single genome 

sequenced with the same technology without the context of a pedigree might be ~16% 

(~18,000 false SNPs per 110,000 reported SNPS). Our “raw” false discovery rate of 29% 

is nearly twice that because we are reporting the combined rate from two founders (the 

parents). These calculations assume that sites that are homozygous and different from 

the reference sequence are not reported as novel SNPs. Conservative analysis, as we 

perform for sites uniformly homozygous in our pedigree of four, suggests that the 

reference sequence may be in error at these positions.  

The reference assembly is reported as a haplotype. Historical error rates with respect to 

genome sequencing have generally been based on haplotypic error. An individual's 

genome contains two haplotypes. Unless otherwise specified, we report error rates as 

per individual per position (i.e., per genotype). Since an error at either haplotype at a 

given position will result in a genotype error, if we reported a haplotype error rate, it 

would be about half our reported genotype error rate.  

Our estimates of error rates are more accurate than similar estimates made for 

genotyping arrays. The most informative positions for estimating error rate are those that 

are invariant or have low heterozygosity. Such positions are relatively rare on genotyping 

arrays because array data is centered on common SNPs, and so are enriched for 

positions at which some individuals in a pedigree are heterozygous. The high 

heterozygosity in genotyping studies also degrades the fraction of detectable MIEs and 

state consistency errors in such studies. 

Missing	  data	  inference	  

For our identification and prioritization of disease candidate alleles, we infer missing data 

using the called alleles of other individuals together with inheritance state. The CES1 

candidate variants were uncalled in three of four individuals, and were called as a 
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homozygous probably detrimental very rare allele in one of the children. Because CES1 

is in an identical block (Fig. 1), missing data inference could confidently infer that the 

other child was also homozygous for the probably detrimental very rare allele, and that 

the parents were most likely heterozygous, making CES1 a strong candidate. One of the 

DNAH5 candidate variants was uncalled in one of the parents. Because DNAH5 is in an 

identical block (Fig. 1), the presence of a probably detrimental very rare allele in this 

parent could be confidently inferred, making DNAH5 a strong candidate. If the search 

were to have been restricted to only fully called positions in all 4 individuals, these two 

candidates would have been missed. However, in the particular dataset reported here, at 

least one of these candidates (DNAH5) would have been found with high confidence 

even without allele inference, as in this case there was adequate information present in 

the called genotypes of the two children alone. 

V. Mutation	  analysis	  

Inference	  of	  deletions	  from	  inheritance	  patterns	  

The presence of a hemizygous deletion, unreported by the sequence technology, in one 

or both of the parents at a site with at least two alleles can result in an observed MIE. 

For example, the observed inheritance pattern [aa, ab, aa, bb] (the genotype order in the 

pattern is [mother/parent1, father/parent2, daughter/child1, son/child2]) is an observed 

MIE. It can arise from a sequence error, but it could also represent a hemizygous 

deletion in parent 1 that was inherited by child 2, the real underlying inheritance pattern 

being [a-, ab, aa, b-]. This particular explanation is only possible in a nonidentical state 

(the children inherit opposite alleles from the parents). Likewise, in a maternal 

haploidentical state the observed inheritance pattern [aa, bb, aa, aa] could represent the 

inheritance of a hemizygous deletion in the mother by both children [aa, -b, a-, a-]. Each 

mode of deletion inheritance results in a specific inheritance pattern. These patterns are 

observed as MIEs. In these patterns, the donor and recipient of the deletion appear 

homozygous. 

We scanned the genomes for inherited hemizygous deletions by looking for regions 

containing two or more MIEs that may be explained by the same deletion inheritance 

pattern and are either immediately adjacent or are separated by non-MIEs consistent 
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with the (transparent) inheritance of a deletion (the deletion donor and recipient are 

homozygous). The frequency of long runs of variable sites consistently homozygous in 

one parent and one child that are supported by just one MIE suggesting hemizygosity in 

those individuals is very high. The occurrence of two neighboring MIEs consistent with 

the same deletion inheritance was rare enough to include even those not further 

supported by flanking non-MIEs showing homozygosity in the individuals that are 

predicted to have the hemizygous deletions. With a minimum requirement of two 

neighboring MIEs consistent with the same gap inheritance or one MIE embedded in at 

least 40 consecutive variable sites homozygous in the deletion carrying individuals, we 

predicted 366 inherited hemizygous deletions. These are supported by 736 apparent 

MIEs and cover 8.25 Mbp and 5479 variable sites. 

At two locations the predicted gaps helped to refine the location of a crossover site. For 

example on chromosome 19, the HMM had predicted a transition from the maternal 

haplo-identical to the non-identical state between position 56,822,642 and 56,842,413, 

but the MIE-rich region 56,824,238 to 56,840,731 is consistent with a gap inherited from 

the mother to both children (not possible in the non-identical state), suggesting the 

crossover to have taken place in the subregion 56,840,731 to 56,842,413 instead.  

The accuracy of the hemizygous gap predictions was partially confirmed by our 

resequencing efforts. Of the 270 MIEs that were confirmed by genotyping according to at 

least one filter, 226 (84%) are located in the 8.25 Mbp of predicted hemizygous gaps 

above (see Supplemental table 3). Up to 32 more MIEs could be located in shorter 

hemizygous deletions (resulting in only a single apparent MIE and spanning fewer than 

40 variable sites) that were not included in our set of 736 gap predictions.  

Deletions spanning only one or a few informative markers cannot be confidently 

identified by this analysis. However, such deletions are often identified by the direct 

results of the assembly of the short read sequences, and do not require computational 

methods for identification. The accuracy of the hemizygous deletion predictions was 

partially confirmed by our resequencing efforts. Of the 270 sites with MIE inheritance 

patterns that were confirmed by at least one genotyping method, 226 (84%) are located 

in the 8.25 Mbp of predicted hemizygous deletions above. Up to 32 more may be located 

in shorter gaps that resulted in only a single observed MIE. 
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Candidate	  selection	  and	  resequencing	  

We initially identified 49,720 de novo mutation candidates among the 2.3 billion bases 

that were successfully genotyped in each parent-offspring trio (2,333,121,607 bases in 

the daughter and 2,336,234,940 bases in the son). We then excluded positions for which 

unique probes could not be successfully designed and positions in error-prone and 

compression states, resulting in 33,937 potential mutations among 1,825,738,754 bases 

in the daughter and 1,830,066,433 bases in the son (total of 3,655,805,187 bases). Next 

we designed a custom Agilent SureSelect array with ~1 million features to capture the 

regions surrounding the 33,937 candidates (as described in Ng et al.) (S9). In addition to 

these regions, we selected probes for 25 regions of length 200 kb that were chosen at 

random from the genome for the purpose of obtaining an additional empirical estimate of 

sequencing error. Genomic DNA samples were sonicated, ligated to adapters suitable 

for subsequent sequencing on the Illumina GA2 (Illumina Inc., San Diego, CA), size-

selected, amplified, and hybridized to the array.7 Four 76-base and one 36-base lanes of 

DNA captured and released from the array were sequenced on the Illumina GA2, and 

aligned to the NCBI 36.1 reference genome using the ELAND (extended) pipeline 

(Illumina, Inc.). An average of 931 Mb of filtered data were successfully aligned by 

ELAND for each genome, based on the summary statistics for the sequencing runs. 

Identification	  of	  de	  novo	  mutations	  

To define the list of candidate de novo mutations we used three base-calling algorithms 

with the Illumina sequencing data: 1) the default settings of Maq (Illumina; 

http://maq.sourceforge.net/maq-man.shtml) (S26), 2) the perl script maq.pl (co-

distributed with Maq; maq.pl applies additional filters), and 3) a binomial method 

described immediately below.  

To perform the binomial method, we identified all the genomic positions at each genome 

covered by at least eight reads. For each position, we tabulated the number of reads 

supporting an A, C, G or T call relative to the top strand of the reference sequence, and 

sorted them by decreasingly observed frequency. 

At homozygous positions, a specific nucleotide is expected to be observed significantly 

more frequently than the other three: these are expected at low, “noise” levels. At 
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heterozygous positions, two specific nucleotides are expected at equivalent levels, and 

significantly more frequently than the remaining two, which should be observed at 

equivalently low levels. We used a simple binomial test (with a probability cutoff of 0.01) 

to ascertain statistical equivalence (or difference) between the calls observed for 

different nucleotides. For example, a position for which the calls were A=13, C=11, G=1, 

T=1 can be confidently called heterozygous A/C, since A=13 and C=11 can be observed 

at high probability by a process producing A and C at random, but C=11 and G=1 are an 

improbable outcome if the process is expected to produce C and G equally. A position 

with A=5, C=0, G=0, T=12 cannot be called with confidence under this model. 

The binomial, Maq, and maq.pl methods confirmed 40, 35 and 53 candidate mutations in 

the daughter, and 35, 52, and 59 in the son. Only 28 candidates (11 in the daughter, 17 

in the son) were confirmed by all three filters. We consider a mutation confirmed if the 

genotype calls in the resequencing data match the original genotype calls in the whole-

genome data for each member of the parent-offspring trio used to initially identify the 

candidate mutation. This excludes all sites with a no call or discordant genotype for any 

member of the trio. 

None of the 28 mutations confirmed by all three filters had been previously reported, 

whereas for each individual filter one third to one half of the confirmed positions had 

been reported. In addition, each of the 28 mutations confirmed by all three filters was 

originally identified in only one of the two children. In contrast, many of the candidates 

confirmed by only one of the three filters were originally identified in both children (Table 

S3). These sites are likely to be prone to sequencing errors across a variety of short-

read technologies. 

Some of the candidate de novo mutations that are not included in our final list are likely 

to be true. However, many have properties that intuitively seem unlikely to be attributes 

of a de novo mutation, such as being embedded in a region rich in MIEs or an assembly 

compression, being present in dbSNP, or (for putative germline SNPs) confirmation in 

one but not the other sibling. Nearly all of the MIEs that showed no novel alleles but a 

pattern of observed allele assortment that was inconsistent with Mendel’s rules (Fig. 

S2A) could be explained by a pattern of inheritance of one or two heterozygous 

deletions. 
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To measure the quality of the combined Maq+maq.pl+binomial filter, we analyzed the 25 

regions that we randomly selected for resequencing. The discordance rate between the 

original Complete Genomics data and the resequencing data was 4.2x10-5 per genotype 

for the default Maq settings vs. 2.3x10-5 for the combined Maq+maq.pl+binomial filter. 

Given that the error rate in the Complete Genomics data reported here is ~1.1x10-5, the 

error rate for the default Maq algorithm was approximately 3.1x10-5 vs. 1.2x10-5 for the 

three filters combined. The incorrect confirmation of a mutation could only result from an 

erroneous genotype call in all three filters that matched the original erroneous call in the 

whole-genome data. Therefore, we estimate that the false positive rate for confirming a 

mutation is approximately 1.2x10-5 per candidate mutation.  

Although the false positive rate of our method was quite low, the false negative rate was 

substantial. Because both the binomial and the maq.pl algorithms have a tendency to 

report a true heterozygote as a “no call,” our false negative rate estimate needed to 

represent sites with the exact pattern of a de novo mutation, with two homozygous 

reference calls and one heterozygote call. To match this pattern, we examined sites in 

the 25 random regions where one to two individuals were heterozygous and two to three 

individuals were homozygous reference in the Complete Genomics data. For each of 

these sites, we constructed one or two “trios”, with two homozygous reference individuals 

representing the parents and one heterozygous individual representing the child with the 

candidate mutation. For each trio, we fail to detect a mutation if any of the three filters 

fails to confirm the genotype call for any member of the trio, and so our estimated false 

negative rate is the fraction of constructed “trios” that could not be confirmed by all three 

filters. The vast majority of such failures were the result of a no call in one or more of the 

filters. Sites that were erroneously called in the original data would cause us to 

overestimate the false negative rate, so to minimize this effect we restricted our analysis 

to sites that did not contain an inheritance error where the heterozygous allele was 

previously reported. In this process, we did not confirm 1832 mutations out of a total of 

2768 constructed “trios”, for a false negative rate estimate of 0.662 (95% C.I. 

approximately 0.644 – 0.680). 
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Calculation	  of	  mutation	  rates	  

The 28 de novo candidates that we report for purposes of rate estimation are 1) not in a 

region rich in MIEs, 2) not embedded in a likely assembly compression, 3) not known 

SNPs, and each one is 4) present in only one of the two children. In addition, we 

estimate that the false positive rate of our confirmation step is approximately 1.2x10-5. 

Therefore this small set was likely to have zero false positives. As a final check, we 

evaluated these SNPs with Sequenom (San Diego, CA) MassArray genotyping and 

confirmed the calls for all 28 de novo candidates (Table S3). 

To incorporate the uncertainty in the false negative rate into the confidence interval of 

the mutation rate, we first note that the mutation rate estimate is derived from the 

outcome of two random variables. Let the first random variable equal a Poisson with 

unknown parameter λ, to represent the number of identified de novo mutations. Let the 

second random variable equal a binomial with parameters n=2768 and unknown p, to 

represent the number of confirmations in the estimate of the false negative rate. The true 

mutation rate, µ, is equal to: 

 

The log likelihood function for λ and p is: 

 

The maximum likelihood estimate for λ/p is equal to 28/(0.338)=82.8. We estimate the 

95% confidence interval for λ/p from a 2-parameter likelihood ratio test using a χ2	  

approximation. Then the upper and lower confidence limits for λ/p are the respective 

minimum and maximum values of λ/p for which the following condition holds: 

 

A	  solution	  to	  this	  equation	  by	  numerical	  methods	  yields	  a	  95%	  confidence	  interval	  for	  λ/p of 

50.0 to 127.8. Then the 95% confidence interval for µ is 6.8x10-9 to 1.7x10-8.  

The false negative and false positive rates were estimated based on the resequencing 

data from the randomly selected regions. However, these were tiled at a different density 

than the candidate de novo mutations, which adds uncertainty to the estimate of the 
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intergenerational mutation rate. Specifically, the randomly selected regions were tiled at 

one probe per ~24 bases whereas the candidate mutations were targeted with 4 probes 

(2 identical probes in each orientation) corresponding to a single location. 

Although our mutation rate estimate is representative of approximately two-thirds of the 

genome, we excluded regions of the genome that may be more mutable; inclusion of 

these regions might result in a higher reported mutation rate. This two-thirds fraction of 

the genome is not a random sample; instead it necessarily represents the proportion of 

the genome that could be reliably sequenced with two different technologies. If regions 

of the genome that are more difficult to sequence are also more mutable, the mutation 

rate in the remaining one third of the genome will be higher than 1.1x10-8 per site. In 

addition, we were only able to identify single-nucleotide mutational events. Although the 

comparable phylogenetic estimates also include only single-nucleotide substitutions, 

recent evidence suggests that a fraction of these substitutions may be the result of multi-

nucleotide mutational events (S27). A summary of the mutation rate calculation is:  

28 mutations / (1.83 billion diploid base pairs x 2 individuals) 
= 7.6 x 10-9 per diploid base pair before adjusting for false negatives 

7.6x10-9 / 2 = 3.8 x 10-9 per haploid base pair before adjusting for false negatives 

3.8x10-9 / (1-0.662) = 1.1x10-8 per haploid base pair 

Because CpG sites mutate at a rate 10 to 12 times higher than other sites (S28), they 

provide an indicator of the mutability of a genomic region. In the 1.83 billion bases we 

surveyed for mutations, the proportion of CpG sites is 1.8%. In the remaining 1 billion 

bases of the reference sequence, this proportion is 2.3%. From this factor alone, we 

estimate that the mutation rate is at least 4% higher in the third of the genome that we 

could not survey. We expect to see a modest increase in intergenerational mutation rate 

estimates over time, resulting from the incorporation of more mutable regions of the 

genome as sequencing technology improves.  

None of the confirmed de novo mutations are on the Y chromosome and, as expected, 

all mutations are at positions homozygous reference in both parents, so cannot be 

assigned to a parental origin based on allele assortment pattern. We cannot estimate the 

ratio of maternal:paternal mutations. We could not confidently estimate a de novo indel 

mutation rate. It is unlikely that many, if any, of the observed 28 mutations are due to 
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mutations in the first few non-germline somatic cell divisions of an individual. If that were 

the case, our estimated germline mutation rate would be lower, and become inconsistent 

with phylogenetic estimates. 

VI. Analysis	  of	  mutations	  and	  disease	  genes	  

Detrimental	  mutations	  

We used the KnownGenes database from UCSC supplemented with a list of 718 

miRNAs as the implementation of our definition of a “gene” for purposes of considering 

gene candidates for inheritance models. We enumerate all missense and nonsense 

mutations, together with mutations in miRNAs, UTRs, non-translated transcripts, splice 

sites and nearby sequences, and highly conserved regions. This approach will miss 

many detrimental variants, such as at enhancers that are not conserved across species; 

this approach will falsely count many variants, such as missense variants that do not 

alter function. 

We use a PhastCons28 score ≥500 for our operational definition of highly conserved 

sequence (S29, S30). For operational implementation, a non-coding transcript is any 

transcript in the UCSC known genes database that does not code for a protein. This 

operational implementation includes, for example, many miRNA transcripts. 

Our set of "potentially detrimental" changes has two types: 1) specific positions with 

specific changes, which are most probably detrimental, and 2) ranges of more vaguely 

functional positions, in which changes might be detrimental (S31-33). The specific 

positions include: non-initiation (altering the ATG initiation codon), nonsense, missense 

and splice. The ranges include: near splice, noncoding, UTR. These positions may or 

may not be conserved across species; those that are conserved are somewhat more 

likely to convey a detrimental phenotype or reduction in fitness as a result of a 

substitution. 

We compared the list of all possible detrimental changes to the list of previously 

observed SNPs. This list includes dbSNP130 and the 1000Genomes data set. In dbSNP 

there are 13,742,160 changes from reference (13,458,407 when looking only at 

chromosomes 1 through 22, X, and Y), 1000Genomes mentions 21,883,431 changes. 
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The two sets overlap by 7,889,443 changes from reference. A SNP not listed in a 

database likely has «0.1% allele frequency in the population. 

The same position can be listed with one or more specific detrimental mutations, and at 

the same time it can be included in a range of positions where changes might be 

potentially detrimental. If a specifically listed position is not in a range, we count only its 

specific changes from reference as most probably detrimental. For positions in ranges 

but not listed specifically, we consider all three possible changes from reference. For 

positions both listed specifically and in a range, we do the combination: the specifically 

listed mutation is counted as most probably detrimental, and all other possible mutations 

are counted as possibly detrimental. 

We tabulated counts over chromosomes 1 through 22, X, and Y. Across all 

chromosomes, there were 33,087,176 positions with at least one probably detrimental 

possible substitution (core splice: 859,727; nonsense: 3,689,392; missense: 28,444,221; 

non-initiation: 93,836). At these 33,087,176 positions, there are 81,455,871 possible 

substitutions of which 181,958 are reported in SNP databases. Across all chromosomes, 

there were 105,144,446 positions with possibly detrimental substitutions of which 

5,744,554 are included in the tabulation of probably detrimental (UTR: 36,230,881; 

noncoding transcript: 18,814,972; in vicinity of a splice site: 28,746,967). At these 

105,144,446 positions, there are 236,325,827 possible substitutions, excluding probably 

detrimental substitutions. Of these, 762,378 are reported in SNP databases. 

Previous authors have speculated that inability to distinguish detrimental variation from 

neutral variation will limit the utility of screening methodologies that attribute function to 

SNPs (S31, S34). However, we demonstrate that for at least two disorders, current 

approaches to assigning SNP function (i.e., identifying missense and nonsense SNPs in 

coding sequences) were adequate for identifying candidates that fit our recessive 

models. Inheritance analysis will become more powerful with the improvement of 

bioinformatic characterization of the effects of variation and mutation throughout the 

genome on function, dysfunction, and fitness.  

For Figure 3 in the main text, averages for compound heterozygote gene candidates do 

not include cases where both children are missing, as a substantial alteration in the 
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definition of “compound heterozygote” occurs in these instances: the definition becomes 

that of any gene in which one parent has a dominant variant. The concept of “candidate 

allele” or “candidate gene” is Boolean, in that a gene either is a candidate or is not. 

Probabilistic, or Bayesian, classification of genes as candidates would be more robust, 

but has not been presented here in order to allow for concise exposition. Because the 

choice of genes are classified as candidates or not, the precise numbers in Figure 3 are 

not robust. For example, if only positions fully called in all individuals were considered, 

there would be fewer candidates for every plotted scenario in the Figure. However, 

although the values for each data point might not be robust, the power of family context 

to substantially decrease candidates is seen with all choices for the definition of 

candidate gene. 

SNP	  frequencies	  

Thirty or more cases of Miller syndrome have been reported in scientific publications 

(S35-44). It is difficult to accurately predict incidence because of the potential for 

acquisition bias and for diagnostic uncertainty. The observed incidence of a disease in a 

population is a result of the genetic model, penetrance as influenced by environmental 

and stochastic effects, and the fraction of cases detected by medical surveillance. For a 

simple recessive model with 100% penetrance, and with uniform population mixing, the 

incidence of the disease is the square of the causative allele frequency. If we assume 

between 500,000 and 5,000,000,000 births were surveyed to observe 30 cases, then the 

disease incidence is 6x10-9 to 6x10-6. The square root of the incidence, and predicted 

causative allele frequency under a simple recessive model, is 7.7x10-5 to 2.4x10-3.  

There are 29 SNPs in dbSNP with a frequency estimate less than 1x10-3 (as of August 

2009). However, there are likely to be millions, if not billions, of very rare SNPs in the 

world human population. Therefore it is unlikely that a SNP solely responsible for Miller 

syndrome, assuming it exists, is in dbSNP or any other database. As genome sequence 

information accumulates, estimated bounds on SNP frequencies will improve. Also, as 

many more genomes are sequenced, and very rare and rare SNPs are submitted to 

databases, the upper bound estimate for population frequency of any SNP not in any 

database will drop. This increasing SNP frequency information will further empower 

methodologies for matching genetic variants to disease models based on using the 
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expected frequency of a disease-causing variant, although the complexity of the 

bioinformatics analysis will increase, as it will no longer be sufficient to equate absence 

from SNP databases with a frequency < 0.1%. As of mid 2009, any SNP or variation 

previously seen is exceptionally unlikely to be etiologic for a rare recessive disorder.  

For compound heterozygote analysis, a SNP seen in both parents is unlikely to be rare 

enough to be consistent with known disease incidence; these were also considered to 

be exceptionally unlikely candidates for etiology. 

Disease	  models	  

For purposes of constraining disease candidates, compression and error-prone blocks 

were considered to be part of the inheritance state block that encompassed them. 

A strong conclusion from published evidence is that the inheritance mode of Miller 

syndrome is recessive (S38, S45, S46). Because there is neither evidence of 

consanguinity in this family nor in any reported case of Miller syndrome siblings, a 

compound heterozygote recessive model might be a better fit to the data than a model of 

recessive inheritance of a single defective allele at a unique position (S38). It has also 

been postulated that all cases of Miller syndrome might be due to de novo mutations 

acting under a dominant inheritance model (S45, S46). Some of the variability in Miller 

syndrome phenotypes may be due to dietary availability of pyrimidines; dietary 

availability (both in utero and perinatally) may be affected by either maternal or fetal 

genetic backgrounds (S47). DHODH mutations in yeast and Drosophila show variable 

phenotypes in different background genotypes, including differences in the severity of 

the wing defect in Drosophila (S48). Therefore we expect that DHODH variations in 

humans might also demonstrate variable expressivity (S49, S50). 

A dominant model would require either very low penetrance or a germline mutation since 

both parents are unaffected. Very low penetrance seems unlikely, given the known 

instances of two affected siblings with Miller syndrome. In the context of exact 

knowledge of inheritance states, a dominant variant could not be in a nonidentical block, 

as in order to share the de novo mutation, the children must be at least haploidentical. 

The mutation is constrained to be in a region spanning 80.2% of the genome. The 

resulting pattern of alleles in the pedigree following a de novo mutation would show up 
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as an MIE, with absence of the mutation in the parents, and heterozygous presence in 

both children. We observed 748 such SNPs, which we tested by resequencing. Three 

were confirmed, but none had predicted functional significance, and we ruled out the 

dominant model for Miller syndrome. 

Relaxing the constraint that an etiologic variant be very rare increases the number of 

candidates (Tables S4 & S5). For example, considering all SNPs regardless of 

frequency, we identified 36 candidates for compound heterozygous genes, one of which 

was DNAH3, a paralog of DNAH5 (Fig. S5). Under simple recessive models, relaxing the 

population frequency threshold to 10% would permit seven candidates. The candidates 

resulting from relaxing the frequency thresholds are more likely to have no functional 

effect or be an artifact of analysis than the candidates meeting strict criteria, as these 

more permissive candidates have weaker, less confident, predictions for functional effect 

(because barring balancing selection, detrimental variation is eliminated from the 

population, and so the higher the frequency of an allele, the less likely it is to be 

detrimental). Also, candidates such as DNAH5 and CES1 that have candidacy based 

partially on inferred data are also slightly less likely candidates than they would have 

been had they been based on fully called data, as there remains some uncertainty in the 

process of inference. 

The predicted amino acid changes for the three genes that fit the compound 

heterozygote mode are: DHODH (chr16:70608443 G>R, chr16:70612611 G>A), DNAH5 

(chr5:13845155 R>Q, chr5:13917742 R>stop), and KIAA0556 (chr16:27691998 E>K, 

chr16:27696565 R>H). The predicted amino acid changes for the missense SNPs in the 

CES1 gene are chr16:54424450 I>R and chr16:54424458 V>P.  

One of the non-coding recessive candidates disrupts a putative acceptor splice site just 

5' of a previously unannotated upstream exon in SP9, the mouse ortholog of which is 

implicated in embryonic skeletal malformation.  

 



 
 

26 

VII. Supplemental	  Figures	  

Figure	  S1.	  Called	  coverage	  in	  all	  4	  genomes.	  

Sequence reads were mapped to the NCBI reference genome. Because each 

individual’s genome is diploid, single nucleotide polymorphisms (SNPs) and insertion-

deletion polymorphisms (indels) were tabulated for both alleles of each individual 

genome for each position in the reference genome. The observed genotype sequence is 

therefore the pair of base-calls for both alleles at each chromosomal coordinate position. 

For some positions, only one allele, or neither, could be confidently called; these 

positions are denoted as “not covered.” In the four individuals (mother, father, daughter, 

son), the percent of fully called sequence was, respectively: 85%, 91%, 91%, and 92%. 

In this pedigree 96% of all of the reference positions were genotyped in at least one 

family member; 81% were genotyped in all four (Table S2). The reference genome was 

divided into seven non-overlapping classes: Exome, Unique, CNVs, and four classes of 

repetitive elements. The UCSC KnownGenes collection operationally defined the exome. 

RepeatMasker 3.2.8 output defined the repetitive element classes. The intersection of 

the UCSC segmental duplications and DGV structural variation collections defined the 

CNV regions. All remaining sequence was designated “Unique.” The repetitive elements 

classed were: Interspersed ("Int" - complex sequence repeats ranging from 100bp to 

over 10kb), Simple (short stretches of low complexity sequence or tandem repeats), 

Young (<10% diverged from consensus) and Old (≥10% diverged from the consensus). 

The lower segment of each column represents the fraction of the sequence class fully 

called. The middle segment (lighter color) represents the fraction of the sequence class 

partially called (i.e, one of two alleles called). The upper segment (lightest color) is the 

remaining fraction: fully uncalled. The horizontal bar at the bottom of the main graph 

depicts the proportion of the genome attributed to each sequence class. M, mother; F, 

father; D, daughter; S, son. 
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Figure S1 
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Figure	  S2A.	  Family	  genome	  inheritance	  analysis.	  

(a) There are four possible states of allele inheritance, depending on whether the 

children inherited the same alleles from both parents (red), share only a maternal allele 

(green) or a paternal allele (yellow), or share none (blue). Inheritance states are 

observed in large contiguous blocks: transitions between blocks correspond to 

recombinations (orange arrows). (b) Ten possible family genotype patterns for biallelic 

positions are consistent with one or two inheritance states. For each pattern (white 

boxes), the parental genotypes are shown on top (father to the left, mother to the right). 

The most frequent allele in the parents is denoted by “a”; in case of equal frequency, “a” 

denotes the most frequent allele in the children. Thus, “aa+ab” means the father is 

homozygous for the most frequent allele, while the mother is heterozygous. A “/” symbol 

is used to indicate that the order is not important. (c) One biallelic family genotype 

pattern, and the single monoallelic pattern, are consistent with all inheritance states, and 

therefore uninformative (brown). (d) Five genotype patterns are Mendelian Inheritance 

Errors (MIE), with a novel allele in a child. (e) Six genotype patterns would require that 

both alleles observed in a child derive from the same parent. 

Figure	  S2B.	  Inheritance	  information	  determines	  uncalled	  genotypes.	  

Graphical conventions are as in Fig. S2A. (a) An uncalled allele with only one possible 

outcome that is consistent with Mendel's rules. (b) Two examples of uncalled alleles that 

can be determined based on prevalent state. The uncalled allele on the left (ab/ab, 

aa/an) resolves as "a" in "identical" context, and as "b" in either haploidentical context. 

Its presence in "nonidentical" context would represent a state consistency error. In the 

example on the right (ab+aa, aa/an) the SNP is consistent with all four states, and in turn 

the prevalent state determines the uncalled allele, as shown. 
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Figure S2A 

 
	  

Figure S2B 
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Figure	  S3.	  Inheritance	  blocks	  emerge	  from	  the	  observed	  variation.	  

For each chromosome, the upper graph depicts the number of informative SNPs 

supporting each of the four possible inheritance states: "identical" (red), "haploidentical 

maternal" (green), "haploidentical paternal" (yellow) and "nonidentical" (blue). SNPs 

consistent with two inheritance states contribute 0.5 weight to each. SNP counts are 

binned in non-overlapping 1 Mb windows; within each window, the four inheritance 

states are sorted by decreasing level of support. This directly leads to the visual 

identification of large blocks of consistent inheritance, bounded by recombination events. 

The lower graph (gray) depicts the density of state consistency errors: SNPs 

inconsistent with the inheritance state in which they are embedded. This graph is topped 

at 100 state consistency errors/Mb. State consistency errors are rare compared to 

informative SNPs. For improved visualization, the scale of the lower graph is 16x that of 

the upper graph. 
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Figure	  S4.	  PCA	  plot	  with	  the	  two	  parents	  and	  the	  HapMap	  phase	  2	  populations.	  

The parents cluster with the Utah HapMap sample. To build the dataset, the phased 

HapMap phase 2 dataset was merged with our complete genome sequence data. The 

PCA was generated from pairwise genetic distances for each individual in the dataset. 

All 2.19 million SNPs were included that met the following criteria: 1) unambiguous 

genotypes in both parents (no nocalls), 2) present in phased HapMap phase 2, and 3) 

the forward and reverse complements of the polymorphic alleles do not match (to avoid 

SNPs that might have been typed on the minus strand in HapMap). The tight clustering 

of the parents with the Utah HapMap sample is a demonstration of the accuracy of our 

data, in that we can merge it with another highly accurate dataset without introducing 

artifactual population structure to the individuals in the two datasets. 
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Figure	  S5.	  Compound	  heterozygous	  candidate	  genes.	  	  

These genes may be considered as candidates for Miller syndrome, or any recessive 

phenotype shared by both children. Rare diseases such as Miller syndrome would be 

more probably encoded by a gene near the origin than a more common recessive 

disease. Any allele with a frequency above 20% is unlikely to be detrimental, as it would 

have been purged from the population by selection unless the negative selection was 

balanced by a positive effect of that allele (51). 0*, reported in a SNP database, but 

without a reported frequency. 
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VIII. Supplemental	  Tables	  

Table	  S1.	  Insertions	  and	  Deletions	  

 

Max 
Effective 
Length 

Total 
count in 
genome 

Number 
in "unique 
sequence" 

Number 
in 
repetitive 
sequence 

Number 
in CNVs 

Number 
in Exome 

Insertions 
47 638,371 275,923 324,889 25,402 12,157 

Deletions 
117 618,494 237,838 347,684 22,215 10,757 

Deletion-
Insertion 

93 247,211 91,461 136,022 14,908 4,820 
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Table	  S2.	  Coverage	  and	  SNP	  distribution.	  

Rare reference allele loci are positions at which all four individuals in the family analyzed 

in this report are homozygous for an allele different from the reference allele. 

Chromosome Y is considered to be fully called in females for purposes of the statistics in 

this table. There are 2,855,343,769 unamibiguous positions in the reference genome; for 

purposes of this table if a genome is fully called at all of these positions, that genome is 

reported as 100% called. 
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Coverage 

Percent of 
Genome Fully 
Called (out of 
2.85 Gbp) 

Percent of 
"unique 
sequence" 
Genome fully 
called (out of 1.2 
Gbp) 

Percent of 
Repetitive 
Genome fully 
called (out of 
1.43 Gbp) 

Percent of 
CNV Genome 
fully called 
(out of 142 
Mbp) 

Percent of 
Exome fully 
called (out 
of 78 Mbp) 

mother 85% 88% 82% 83% 92% 
father 91% 94% 89% 88% 96% 
daughter 91% 94% 88% 88% 95% 
son 92% 95% 89% 89% 96% 
Intersection of 
daughter & son 88% 92% 85% 85% 94% 
all four (i.e., 
pedigree 
coverage) 81% 86% 78% 77% 90% 
any of the four 96% 98% 94% 95% 98% 
Statistics for 
Characteristics 
of Positions       

 

 
Total count in 
genome  

Number 
(fraction) in 
"unique 
sequence" 

Number 
(fraction) in 
repetitive 
sequence  

Number 
(fraction) in 
CNVs 

Number 
(fraction) in 
exome  

SNPs 3,665,772 
1,542,175 
(42.1%) 

1,879,975 
(51.3%) 

168,610 
(4.6%) 

75,012 
(2.0%) 

Rare Reference 
Allele Loci 805,738 

333,056 
(41.3%) 

421,485 
(52.3%) 

35,839 
(4.4%) 

15,358 
(1.9%) 

MIEs 59,243 
21,723 
(36.7%) 

31,185 
(52.6%) 

4,788 
(8.1%) 

1,547 
(2.6%) 

state consistency 
errors 25,725 

10,284 
(40.0%) 

12,704 
(49.4%) 

2,078 
(8.1%) 

659 
(2.6%) 

SNP positions 
with at least one 
no call 1,183,152 

311,092 
(34.7%) 

516,354 
(57.6%) 

55,782 
(6.2%) 

13,616 
(1.5%) 

SNP positions 
with a no call in 
mother 793,065 

209,074 
(36.6%) 

322,711 
(56.5%) 

31,999 
(5.6%) 

7,477 
(1.3%) 

SNP positions 
with a no call in 
father 497,766 

116,649 
(33.1%) 

206,814 
(58.7%) 

23,974 
(6.8%) 

5,061 
(1.4%) 

SNP positions 
with a no call in 
daughter 430,223 

95,393 
(31.8%) 

175,406 
(58.5%) 

23,574 
(7.9%) 

5,336 
(1.8%) 

SNP positions 
with a no call in 
son 434,473 

90,283 
(29.7%) 

187,443 
(61.6%) 

21,655 
(7.1%) 

4,730 
(1.6%) 
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Table	  S3.	  Tabulation	  of	  potential	  de	  novo	  mutations	  (attached	  file).	  

The columns are: 

Chrom: chromosome 

Site: coordinate 

State: the inheritance state of the position as defined in the main text 

MIEtype: unexp(ected allele) or wrong (combination) 

Ref: Base call in reference sequence (hg18) 

Genotype: ‘ab’ genotype (‘a’ = reference); m=mother, f=father, d=daughter, s=son) 

maq: PASS if all four genotypes were confirmed by maq 

maq.pl: PASS if all four genotypes were confirmed by maq.pl SNPfilter 

Beyond maq's calls, this script qualifies SNPs based on the quality of the context: "Rule 

out SNPs that are covered by few reads (specified by -d), by too many reads (specified 

by -D), near (specified by -w) to a potential indel, falling in a possible repetitive region 

(characterized by -Q), or having low-quality neighboring bases (specified by -n)." Default 

values of parameters: -d = 3, -D = 256, -w = 3, -Q = 40, -n = 20; maq.pl SNPfilter doesn't 

disqualify any of the "unexpected allele" MIEs. It does reject several "wrong 

combination" MIEs. 

binom: PASS if all four genotypes were confirmed by the binomial method 

Massarray: PASS if all four genotypes were confirmed by Sequenom MassArray 

analysis; ‘ab’-genotype if a different genotype was observed. (1) Genotyping failed in the 

paternal genome and could in principal be ‘ab’, but all three filters on array results 

suggest it is indeed ‘aa’. (2) Genotyping failed in the paternal genome, but this is 

inconsequential since in the haploidentical paternal state the ‘b’ allele in the son only 

should have come from the mother. (3) This genotype is a state consistency error. All 

other new genotypes resulting from Sequenom analysis fit the local inheritance patterns. 

(4) Genotyping failed in the mother, while in a haploidentical maternal region the ‘b’-

allele in both kids would have been inherited from the mother. Considering that the 

potential de novo mutation represents a known allele and that the capture array 

coverage was very weak for the maternal genome, we predict this to be a false call 

rather than a de novo mutation. 
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Assessment: An unexpected allele is labeled a "DE_NOVO" mutation if all three capture 

array analysis methods or one such method and the MassArray results confirmed all four 

genotypes. DE_NOVO(dtr) and DE_NOVO(son) for new alleles present in the daughter 

or son. FALSE_CALL: the MIE was resolved by resequencing. HEMIZ_GAP: the 

apparent MIE resulted from the inheritance of a hemizygous deletion. Uncertainty is 

indicated by a question mark. Calls are considered certainly false when the unexpected 

allele is a known allele or when MassArray genotyping revealed a Mendelian inheritance 

pattern. Hemizygous gaps are considered certain explanations for a wrong combination 

MIE when the site is within a predicted hemizygous gap of a type that can explain the 

observed genotype. 

Change: transition or transversion, with specific bases indicated 

Context: trinucleotide context of the mutation site. Lowercase if repeat. 

KnownSNP: indicates if the unexpected allele in the child(ren) has been reported before 

in dbSNP, the 1000 Genome Project, the Venter, Watson, the first Yoruban or Asian 

genomes, or the CNV database. The dbSNP identifier is given when the SNP appeared 

in dbSNP build 130. 

maq-quals: quality scores assigned by maq (for mother, father, daughter, son) 

Coverage: resequencing coverage (for mother, father, daughter, son) 

Mapability: based on the wgEncodeDukeUniqueness35bp track 

Deletion?: Indicates the type of inheritance of a hemizygous deletion could, in principal, 

explain the observed “wrong combination MIE” given the known inheritance state. F = 

father, M = mother, S = son, D = daughter. For example, M->D&S is a deletion inherited 

by both children (possible in either the identical or haploidentical maternal state).  

Predicted gap extent: Maximum extent of hemizygous gaps (inherited in the same 

fashion as indicated in the previous column) as predicted by the gap prediction analysis 

described above. 

 



 
 

39 

 

Table	  S4.	  Reduction	  in	  false	  positive	  candidate	  SNPs	  using	  inheritance	  analysis.	  

Genomic inheritance analysis excludes many false positive candidates and enhances 

the signal to noise of family based complete genome sequencing. This table shows 

benefits in together removing both correct and falsely called sequence variants from 

candidacy. Correctly called variants are removed if they occur in a region with an 

inheritance state inconsistent with the inheritance mode (recessive, compound 

heterozygous, or dominant). Falsely called variants are removed regardless of 

inheritance state. Inheritance analysis permits: determination of regions of the 

chromosome that were inherited from each parent in the affected siblings, inference of 

missing data, and identification of positions that are errors because their inheritance 

pattern is inconsistent with the inheritance state of the region or are MIEs. These factors 

permit a reduction in the number of false positive candidates for disease models. For 

example, if this information were ignored, there would be nine variation candidates (in 

seven genes) for very rare recessive missense mutations. Using this information, there 

are only two candidates (linked in the same gene, CES1). False positives inherent to 

true genotypes, such as a very rare SNP coincidentally with the correct inheritance 

mode and that is not detrimental or is detrimental but affecting another phenotype, 

cannot be eliminated with inheritance analysis: better functional prediction or the 

additional of individuals to resolve the inheritance mode would be necessary to remove 

these false positives. The recessive categorization tabulates simple recessive patterns; 

these do not include compound heterozygote patterns. Dominant inheritance patterns 

tabulated in this table match sets of genotypes for the pedigree in which one parent is 

homozygous for a common allele, and one parent and both children are heterozygous 

for a candidate detrimental allele. Such a dominant model, to be realized in this family as 

causing a phenotype shared by the two children but not by the parents, would require 

the phenotype to not be penetrant in the heterozygous parent. Such low penetrance is 

unlikely for the observable phenotypes in this family; therefore the counts for the 

dominant model represent a control analysis for estimating the false positive rate of 

dominant candidates for a disease if a family of four, with a phenotype consistent with 

dominant inheritance, were to be analyzed. IS; exact knowledge of inheritance state. 
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all 
25675

9 2940 2719 1471 2287 967 17 10 5 66 
very 
rare 25651 421 305 213 203 145 0 1 1 3 

With IS: 
candidates 
for 
compound 
heterozygote 
patterns known 

23110
8 2519 2414 1258 2084 822 17 9 4 NA 

all 
58910

8 6781 5830 3196 5023 1990 38 23 10 NA 
very 
rare 62019 1104 692 434 509 322 7 6 2 NA With IS: 

dominant 
candidates  known 

52708
9 5677 5138 2762 4514 1668 31 17 8 NA 

all 60489 543 526 297 520 149 0 1 1 NA 
very 
rare 528 2 1 5 1 2 0 0 0 NA With IS: 

recessive 
candidates  known 59961 541 525 292 519 147 0 1 1 NA 

all 
67334

8 7743 6422 3651 5587 2188 40 26 10 66 
very 
rare 73196 1333 764 542 582 369 8 7 2 3 

No IS: 
dominant or 
compound 
heterozygote 
pattern 
candidates  known 

60015
2 6410 5658 3109 5005 1819 32 19 8 NA 

all 
11926

4 1134 907 579 936 277 3 1 2 NA 
very 
rare 1634 53 8 25 9 9 0 0 0 NA No IS: 

recessive 
candidates  known 

11763
0 1081 899 554 927 268 3 1 2 NA 
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Table	  S5.	  Signal-to-noise	  enhancement	  provided	  by	  family	  sequencing.	  

Sequencing and analysis of family members excludes many false positives and 

enhances the signal to noise of complete genome sequencing. A large increase in the 

number of excluded false positives occurs at the transition from three sequenced to four 

sequenced individuals. This increase is made possible not just from inference of missing 

data but also because inheritance analysis permits determination of inheritance states, 

and consequently exclusion of large portions of the genome from consideration. For 

most functional categories, the number of false positive candidates drops several fold 

when three individuals are sequenced rather than one, and by about an additional order 

of magnitude as a fourth individual is added to the set sequenced. (M, mother; F, father; 

D, daughter; S, son). “Very rare” is operationally defined as a SNP not in a known 

database (e.g., dbSNP or the 1000 Genome collection) and is equivalent to a frequency 

< 0.1%; “common” is operationally defined as a SNP in a known database. For the top 

row in each panel, when all four individuals are sequenced (i.e., none are excluded), all 

candidate SNPs are constrained to be in "identical" blocks. Inheritance state information 

is greatly impoverished in combinations of two or three individuals with only two children 

included, and is completely absent in other combinations of individuals, so no constraint 

from state blocks is applied to limit candidates when less than all four individuals are 

considered. An initiation mutation alters the ATG of a mRNA. Panel A: rare SNP 

candidates for a recessive inheritance model; Panel B: common SNP candidates for a 

recessive inheritance model; Panel C: rare SNP candidates that might form half of a 

compound heterozygote variation pair, and the resulting number of candidate genes; 

Panel D: common SNP candidates that might form half of a compound heterozygote 

variation pair, and the resulting number of candidate genes.  
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 Table S5 (panel A). 
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none 60489 528 2 1 5 1 2 0 0 0 
missing: S 208420 1668 33 17 16 12 9 0 0 0 
missing: D 230919 1918 57 14 25 8 7 0 0 0 
missing: F 235734 788 15 7 6 7 4 0 0 0 
missing: M 139812 617 15 2 6 5 4 0 0 0 
missing: 
S,D 789832 27186 568 203 274 191 139 2 4 0 
missing: 
S,F 437888 2199 40 22 21 16 9 0 0 0 
missing: 
D,F 456545 2505 71 23 28 11 8 0 0 0 
missing: 
S,M 356730 2237 46 24 23 13 11 0 0 0 
missing: 
D,M 376177 2451 63 19 32 12 9 0 0 0 
missing: 
M,F 816218 1729 51 10 26 10 9 0 0 0 
missing: 
S,D,M 1959524 119813 1925 1309 825 1029 571 6 10 3 
missing: 
S,D,F 1861024 111381 1940 1284 900 960 601 13 17 1 
missing: S, 
M, F 1159074 5292 94 39 39 30 20 0 0 0 
missing: D, 
M, F 1181721 5630 125 47 49 37 17 1 0 0 
MEANS:                     
missing 
one 203721 1248 30 10 13 8 6 0 0 0 
missing 
two 538898 6385 140 50 67 42 31 0 1 0 
missing 
three 1540336 60529 1021 670 453 514 302 5 7 1 
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 Table S5 (panel B). 
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none 59961 541 525 292 519 147 0 1 1 
 S 206398 2053 2007 1036 1735 543 10 4 2 
 D 228606 2283 2014 1133 1882 574 8 4 2 
 F 234805 2383 1997 1035 1865 575 13 2 3 
 M 139063 1441 1208 748 1164 366 5 1 5 

 S,D 756961 8050 7489 4245 6701 2290 34 28 5 
 S,F 435198 4564 4064 2075 3555 1146 24 10 3 

 D,F 453521 4743 4060 2233 3683 1165 23 6 4 

 S,M 354011 3692 3489 1883 3020 975 19 4 6 

 D,M 373210 3918 3508 2009 3274 1052 17 5 5 

 M,F 814285 9256 8392 4512 7365 2755 42 12 11 

 S,D,M 1824652 20044 18460 9950 16219 5773 79 55 19 

 S,D,F 1735899 19671 18321 9849 15649 5702 100 53 16 

 S, M, F 1153163 12714 11730 6135 10116 3604 63 20 12 

 D, M, F 1173527 12881 11852 6331 10450 3694 62 18 12 
MEANS:                   
missing 
one 202218 2040 1807 988 1662 515 9 3 3 
missing 
two 531198 5704 5167 2826 4600 1564 27 11 6 
missing 
three 1471810 16328 15091 8066 13109 4693 76 37 15 
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Table S5 (panel C).  
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none 256759 25651 421 305 213 203 145 0 1 1 3 
S 1081419 113971 1969 1207 843 947 565 15 9 2 31 
D 1096928 115109 2013 1258 783 999 515 11 7 2 27 
F 488794 43961 718 547 289 380 236 6 2 2 23 
M 488810 43966 718 547 289 380 236 6 2 2 12 
S,D 1963559 214224 3587 2432 1534 1865 700 18 11 4 37 
S,F 1118583 131671 2290 1451 962 1130 708 21 16 4 58 
D,F 1166766 145595 2661 1620 983 1282 700 14 16 2 50 
S,M 1157890 133633 2329 1481 967 1156 714 21 16 4 49 
D,M 1189541 145515 2667 1630 946 1285 693 14 15 2 41 
M,F 488796 43963 718 547 289 380 236 6 2 2 28 
S,D,M 4154347 271527 4631 3149 1915 2480 1005 43 26 6 NA 
S,D,F 3959401 262235 4526 3033 1912 2408 1008 36 26 6 NA 
S, M, F 1069645 123053 2070 1384 885 1067 666 20 15 4 72 
D, M, F 1118848 136668 2438 1570 864 1224 664 12 15 2 64 
MEANS:                       
missing 
one 788988 79252 1355 890 551 677 388 10 5 2 23 
missing 
two 1180856 135767 2375 1527 947 1183 625 16 13 3 44 
missing 
three 2575560 198371 3416 2284 1394 1795 836 28 21 5 68 
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 Table S5 (panel D). 
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none 231108 2519 2414 1258 2084 822 17 9 4 66 
 S 961493 10534 9482 5071 8176 3019 43 21 12 256 
 D 974559 10722 9537 5115 8255 2935 46 31 12 259 
 F 443438 4982 4480 2326 3920 1435 24 14 7 217 
 M 443448 4983 4480 2326 3920 1435 24 14 7 169 
 S,D 1727735 19375 17777 9431 15107 4138 81 36 17 374 
 S,F 982879 10791 9676 5138 8377 3045 45 20 13 478 
 D,F 1014438 11190 9878 5382 8586 2991 49 32 12 461 
 S,M 1018278 11049 9947 5304 8640 3073 48 20 13 451 
 D,M 1036735 11329 10030 5429 8742 2997 53 31 12 472 
 M,F 443438 4982 4480 2326 3920 1435 24 14 7 312 
 S,D,M 3855842 43409 40121 21466 34544 6052 225 50 40 NA 
 S,D,F 3672784 41970 38971 20953 33382 5977 216 48 38 NA 
 S, M, F 942563 10311 9305 4859 8049 2931 41 18 12 655 
 D, M, F 975451 10662 9534 5053 8277 2901 48 29 12 660 
MEANS:                     
missing 
one 705735 7805 6995 3710 6068 2206 34 20 10 215 
missing 
two 1037251 11453 10298 5502 8895 2947 50 26 12 425 
missing 
three 2361660 26588 24483 13083 21063 4465 133 36 26 658 
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